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Electronic Medical Records

 Digital version of a patient’s 
medical history:
 Inpatient notes
 Labs and physical exams
 Prescribed medications
 Diagnoses and procedures
 Treatment plans
 Discharge instructions

The big promise of lies in large-scale use, automatically feeding clinical research, quality 
improvement, and clinical phenotyping. 
Hripcsak & Albers, JAMIA. 2013



Clinical Phenotyping

 Goal: identify cohorts of patients with specific clinical features characteristic of a 
disease of interest

 Typical approaches:
 Rule-based

+ interpretable, fast to implement, good results on limited datasets
- requires expert knowledge and multiple iterations, not easily generalizable

 Natural language processing and text mining
+ rich data not found in other sources
- sensitive to misspelling/bad grammar, redundancy, ambiguity

 Machine learning
+ many standardized approaches, easy implementation, robust
- curse of dimensionality; difficult with rare disease/small patient cohorts



NIH Health Care Systems Research Collaboratory. Tools 
for EHR-based phenotyping. Type 2 diabetes mellitus 
phenotype definitions (Version 1.0). 2014.



Motivation

• Traditional approaches are good at providing 
information on the ”average patient”

• What evidence can physicians use when trying to 
treat a patient whose symptoms deviate from 
average?

• Patient Similarity: derive insights from patients 
that are similar to an index patient to provide 
personalized predictions1

• Diagnostic cohort identification
• Drug repurposing
• Identify and tailor treatment recommendations 

1Sharafoddini et al. JMIR Med Inform. 2017



Approach
1. Similarity function

 Data-driven; automatic
 Pediatric data - OMOP CDM v5

2. Clustering
 Similarity function-driven

3. Cluster identification/labeling
 Clinical terminologies/value sets
 Biomedical Knowledgebase
 Literature

4. Evaluation
 Compare to PheKB clusters
 Verify algorithm reproducibility across data 

warehouses



Labs Medications

Diagnoses

SNOMED CT: 
252822006

RxNorm: 
644301

LOINC: 
65758-5

Concept Normalization
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Clinical Concepts
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MxN matrix

Patient Concepts

𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡1, 𝑡𝑡2 = −𝑙𝑙𝑙𝑙𝑙𝑙2
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Term-Term similarity1
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1
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Set-Set similarity for each clinical feature i2
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Aggregation of clinical feature-feature similarity

Terminology Concept Ancestors

1Batet et al. J Biomed Inform. 2011; 2Azuaje et al. Proc ISMB'2005 SIG. 2005
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vPatient_similarity = [0.0 + 1.0 + 0.2 + 0.389 + 0.456 + 0.027]

gender, race, age conditions, labs, medications

MRN Age Gender Race

12345 14.0 Male WhiteDemographics

MRN Labs Diagnosis Medication

12345
Abs Cd4+ T 
Lymp: 1093 
cells/mm3

Age-related 
macular 

degeneration

0.05 ML 
Ranibizumab 10 
Mg/ML injection



Evaluation
 Children’s Hospital of Colorado EHR data

 De-identified (COMIRB # 15-0445)

 PEDSnet OMOP version 5
 Concepts normalized to standardized 

terminologies

 Test Case – 2 groups (N = 20)
 Huntington’s Chorea (ICD-9-CM 333.4)
 Cystic Fibrosis (ICD-9-CM 722.0)



Cystic Fibrosis

Huntington’s Chorea
 Fatal disorder caused by breakdown of nerve 

cells in the brain
 30,000 Americans have been diagnosed
 Symptoms include:

 Personality, mood changes
 Unsteadiness, poor coordination

 Diagnoses (𝑥𝑥 = 320.2; unique = 334)
 Laboratory tests (𝑥𝑥 = 114.1, unique = 119)
 Medications (𝑥𝑥 = 1528.7, unique = 177)

 Genetic disease that causes mucus buildup 
resulting in persistent lung infection and 
difficulty breathing

 >30,000 people diagnosed worldwide
 Symptoms include:

 Coughing, wheezing, frequent lung infections
 Poor growth, male infertility

 Diagnoses (𝑥𝑥 = 982.5, unique = 447)
 Laboratory tests (𝑥𝑥 = 3104.4, unique = 124)
 Medications (𝑥𝑥 = 3120.3, unique = 392)

Hdsa.org/what-is-hd/

https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/



Clustering

 Convert pairwise patient similarity to 
distance matrix 

 Agglomerative hierarchical clustering with 
complete linkage

 3 Clusters
 Cystic Fibrosis
 Huntington’s Chorea – red
 Huntington’s Chorea – yellow

 Pulmonary fibrosis (3; top 4 frequent dx)
 Asthma (2; top 10 frequent dx)



Conclusions
 Developed a patient similarity algorithm

 Data-driven
 Composite semantic similarity  for heterogeneous data types
 Adjust weights to customize by use case
 Promising initial proof of concept with pediatric EHR is promising

 Limitations
 Small test group, need to scale to larger groups
 Limited evaluation
 Several unmapped Generic Product Identifiers

 Future Work
 Explore alternative semantic similarity algorithms
 Optimize algorithm
 Develop machine learning approach to determine patient similarity attribute weights
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